General information
Course name | Lecture: Advanced Computational Neuroscience I |
Subtitle | |
Course number | 530074 |
Semester | WiSe 2023/24 |
Current number of participants | 37 |
expected number of participants | 150 |
Home institute | III. Physikalisches Institut - Biophysik |
Courses type | Lecture in category Teaching |
First date | Monday, 23.10.2023 12:00 - 14:00, Room: (HS3, A.00.105 (Fakultät Physik)) |
Type/Form | |
Participants |
BIO MSC 1 INF MSC 1 PHY MSC 1 |
Pre-requisites |
Die interdisziplinaere Vorlesung "Computational Neuroscience" wendet sich an fortgeschrittene Studierende der Biologie, Informatik sowie Physik. Die Veranstaltung wird die Grundlagen der Neurophysiologie auffrischen und von dort aus die Theorie neuronaler Informationsverarbeitung in einzelnen Zellen sowie kleinen und groesseren Netzwerken vermitteln. Bezuege zur technischen Neuroinformatik werden dabei auch aufgezeigt. Grundlegende mathematische Kenntnisse sind erforderlich. Lernziele: Erlernen der heute bekannten neuronalen Algorithmen zum selbständigen Lernen und Strukturbildung in biologisch realistischen neuronalen Netzen. Gewinn eines Einblicks in die Möglichkeiten dieser Methoden im Bereich technischer Systeme (Roboter). The interdisciplinary course "Computational Neuroscience" is intended for advanced students of biology, computer science as well as physics. The course will refresh the basics of neurophysiology and from there teach the theory of neuronal information processing in single cells as well as small and large networks. Links to technical neuroinformatics will also be shown. Basic mathematical knowledge is required. Learning Objectives: To learn currently known neural algorithms for independent learning and structure formation in biologically realistic neural networks. Gain insight into the possibilities of these methods in the field of technical systems (robots). Modulinhalte: Correlation-based \('Hebbian') Learning \(Learning from the intrinsic data structure); Differential Hebbian Learning (Learning of temporal sequences); Reinforcement Learning (Learning from reward and punishment); Supervised Learning (Learning from examples). |